Inorg. Chem. 2007, 46, 8008-8018

Analysis of Uranium Azide and Nitride Complexes by Atmospheric Pressure Chemical Ionization Mass Spectrometry

William J. Evans,* Kevin A. Miller, Joseph W. Ziller, and John Greaves

Department of Chemistry, University of California, Irvine, California 92697-2025

Received March 30, 2007

Atmospheric pressure chemical ionization mass spectrometry (APCI-MS) has been used to characterize the airsensitive paramagnetic organouranium azide and nitride complexes $[(C_5Me_5)_2UN_3(\mu-N_3)]_3$ and $[(C_5Me_5)U(\mu-I)_2]_3N$, respectively. The trimetallic complex $[(C_5Me_5)U(\mu-I)_2]_3E$ had been identified by X-ray crystallography, but the data did not definitively identify E as N³⁻ versus O²⁻ or (OH)⁻, a common problem in heavy-element nitride complexes involving metals with variable oxidation states. A comparison of the 250 °C APCI-MS spectra of products made from NaN₃ and Na¹⁵NNN showed mixed [M]⁺ and [M + H]⁺ envelopes at expected ion intensities for the ¹⁴N and ¹⁵N isotopomers. A compilation of U–C(C₅Me₅) and U–I bond distance data for U³⁺ and U⁴⁺ is also reported that shows that the ranges for the two oxidation states have significant overlap.

Introduction

Recent results in uranium azide chemistry have indicated that this metal—ligand combination is likely to be quite useful in the production of new structures and reactivity patterns. For example, the first actinide polyazide complex, the heptaazide $(Bu_4N)_3U(N_3)_7$,¹ has been isolated (eq 1), and the

mixed azide nitride $[(C_5Me_5)_2U(\mu-N)(C_5Me_5)_2U(\mu-N_3)]_4^2$ has been isolated from the reaction of $[(C_5Me_5)_2U][BPh_4]$ and NaN₃ (eq 2). The latter complex is unusual in both its large 24-atom uranium—nitrogen ring structure and the nearly linear UNU linkages. Complexes of this type that are dense

in uranium and nitrogen may be of interest as molecular precursors to high-purity UN, a potential nuclear fuel of the future.^{3,4}

To expand the range of uranium complexes of this type, the reactions of some well-known organouranium halides with sodium azide were examined. In the case of the tetravalent precursor, $(C_5Me_5)_2UCl_2$,⁵ an azide derivative, $[(C_5Me_5)_2UN_3(\mu-N_3)]_3$ (1), was isolated and completely identified by X-ray crystallography.

^{*} To whom correspondence should be addressed. E-mail: wevans@uci.edu.
(1) Crawford, M.-J.; Ellern, A.; Mayer, P. Angew. Chem., Int. Ed. 2005, 44 7874

⁽²⁾ Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Science 2005, 309, 1835.

⁽³⁾ Black, L.; et al. J. Alloys Compds. 2001, 315, 36.

⁽⁴⁾ Reshetnikov, F. G. At. Energ. 2001, 91, 998.

⁽⁵⁾ Marks, T. J.; Fagan, P. J.; Manriquez, J. M.; Maatta, E. A.; Seyam, A. M. J. Am. Chem. Soc. **1981**, 103, 6650.

With the trivalent starting material, $(C_5Me_5)UI_2(THF)_{3,6}^{6}$ no azide was isolated, but instead a trimetallic complex, $[(C_5-Me_5)U(\mu-I)_2]_3E$ (2), was obtained that appeared to contain a nitride ion. Although the X-ray crystallographic data were consistent with an N³⁻ ion in this complex, this method of analysis was not able to differentiate the nitride from oxide or hydroxide. Because the three uranium atoms in the structure could have variable oxidation states, any of these options were possible. Differentiating nitrogen from oxygen in the presence of large metals of variable oxidation state is a general problem in heavy-metal chemistry.^{7,8} Because the electropositive f elements are so oxophilic, it is always possible to incorporate oxide or hydroxide inadvertently into structures.⁹⁻¹⁷

We report here the use of atmospheric pressure chemical ionization mass spectrometry (APCI-MS) to resolve the nitride problem and to test its general application to complexes of this type. We also present a compilation of $U-C(C_5Me_5)$ and U-I bond distance data for U^{3+} and U^{4+} metallocenes that was assembled to determine if this would be useful in identifying E in **2**. With organolanthanide complexes, it is often possible to differentiate oxidation states on the basis of $M-C(C_5Me_5)$ bond lengths.^{18,19}

Experimental Section

The manipulations described below were performed under nitrogen with the rigorous exclusion of air and water using Schlenk, vacuum-line, and glovebox techniques. Solvents were dried over Q-5 and molecular sieves. NMR solvents were dried over a sodium—potassium alloy and vacuum-transferred before use. NMR spectra were recorded with a Bruker DRX 500 MHz system. IR spectra were recorded as thin films on an ASI ReactIR 1000 instument.²⁰ (C₅Me₅)₂UCl₂⁵ and (C₅Me₅)UI₂(THF)₃⁶ were prepared as previously described. NaN₃ and Na¹⁵NNN were purchased from Aldrich and placed under vacuum (10⁻³ Torr) 12 h before use. Elemental analyses were performed by Analytische Laboratorien, Lindlar, Germany. APCI-MS spectra were collected on a Waters (Micromass) LCT Premier orthogonal time-of-flight mass spec-

- (6) Avens, R. L.; Burns, C. J.; Butcher, R. J.; Clark, D. L.; Gordon, J. C.; Schake, A. R.; Scott, B. L.; Watkin, J. G.; Zwick, B. D. Organometallics 2000, 19, 451.
- (7) Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Angew. Chem., Int. Ed. 2002, 41, 3433.
- (8) Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Organometallics 2001, 20, 2552.
- (9) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Polyhedron 2004, 23, 2689.
- (10) Evans, W. J.; Davis, B. L.; Nyce, G. W.; Fujimoto, C. H.; Ziller, J. W. J. Organomet. Chem. 2003, 677, 89.
- (11) Evans, W. J.; Allen, N. T.; Greci, M. A.; Ziller, J. W. Organometallics 2001, 20, 2936.
- (12) Evans, W. J.; Hozbor, M. A.; Bott, S. G.; Robinson, G. H.; Atwood, J. L. Inorg. Chem. 1988, 27, 1990.
- (13) Schumann, H.; Keitsch, M. R.; Demtschuk, J.; Molander, G. A. J. Organomet. Chem. 1999, 582, 70.
- (14) Deng, D.; Song, F.; Wang, Z.; Qian, C.; Wu, G.; Zheng, P. Polyhedron 1992, 11, 2883.
- (15) Hitchcock, P. B.; Lappert, M. F.; Prasher, S. J. Organomet. Chem. 1991, 413, 79.
- (16) Xie, Z.; Liu, Z.; Chui, K.; Xue, F.; Mak, T. C. W. J. Organomet. Chem. 1999, 588, 78.
- (17) Hermann, W. A.; Anwander, R.; Kleine, M.; Ofele, F.; Riede, J.; Scherer, W. Chem. Ber. 1992, 125, 2391.
- (18) Evans, W. J.; Foster, S. E. J. Organomet. Chem. 1992, 433, 79.
- (19) Shannon, R. D. Acta Crystallogr. 1976, A23, 751.
- (20) Evans, W. J.; Johnston, M. A.; Ziller, J. W. Inorg. Chem. 2000, 39, 3421.

trometer. Toluene was used as the analyte solvent and to generate the reagent ions. The corona discharge was set very low at 1 μ A, and the temperature of the APCI-MS probe was critical for obtaining molecular weight information. Because of the air and water sensitivity of the samples, syringes were loaded with the analyte dissolved in toluene while in the glovebox. The syringe needles were sealed with a septum and brought to the mass spectrometer for immediate analysis.

 $[(C_5Me_5)_2UN_3(\mu-N_3)]_3$ (1). In a nitrogen-filled glovebox, (C₅Me₅)₂UCl₂ (264 mg, 0.456 mmol) in tetrahydrofuran (THF; 5 mL) was added to a stirred slurry of NaN₃ (59 mg, 0.91 mmol) in THF (2 mL). After the solution was stirred for 12 h, the solution was centrifuged to remove a red-brown precipitate. The precipitate was washed three times with THF and discarded. The THF washings were combined with the dark-red supernatant and evaporated to dryness to yield 1 as a dark-red crystalline powder (248 mg, 92%). Crystals of 1 suitable for X-ray diffraction were grown at 25 °C from a concentrated THF/toluene solution. ¹H NMR (500 MHz, C₆D₆): δ 0.67 (s, 30H, C₅Me₅, $\Delta \nu_{1/2} = 20$ Hz). ¹³C NMR (500 MHz, C_6D_6): δ -41.4 (C_5Me_5), 126.0 (C_5Me_5). IR: 2964s, 2918s, 2856s, 2111vs, 2073vs, 1586w, 1490w, 1447m, 1351m, 1316w, 1258vs, 1065vs, 1011vs, 865s, 803s, 702s cm⁻¹. Anal. Calcd for $C_{60}H_{90}N_{18}U_3$: C, 40.54; H, 5.10; N, 14.18; U, 40.17. Found: C, 40.41; H, 5.12; N, 14.29; U, 40.58.

 $[(C_5Me_5)U(\mu-I)_2]_3N$ (2). In a nitrogen-filled glovebox, a bluegreen solution of (C5Me5)UI2(THF)3 (254 mg, 0.301 mmol) in THF (10 mL) was added to a stirred slurry of NaN₃ (10 mg, 0.151 mmol) in THF (2 mL). The solution became dark-red after 20 min. After the mixture was stirred overnight, the dark-red solution was evaporated to a tacky oil that was dissolved in toluene and allowed to stir for 2 h. The dark-red solution was centrifuged, and a white insoluble material was removed. Evaporation of the supernatant vielded a dark red oil that was dissolved in a 1:1 hexane/toluene solution and cooled to -35 °C. After 1 day, 2 was obtained as dark-red crystals (62 mg, 33%). Crystals of 2 suitable for X-ray diffraction were grown at -35 °C from a concentrated hexane solution. ¹H NMR (C₆D₆): δ 25.5 (br s, C₅Me₅, $\Delta v_{1/2} = 135$ Hz). IR: 2971m, 2943m, 2903s, 2857m, 2099w, 1483w, 1450m, 1431m, 1378s, 1262w, 1023w, 802w, 601vs cm⁻¹. Anal. Calcd for C₃₀H₄₅I₆-NU₃: C, 19.01; H, 2.39; N, 0.75; U, 37.68; I, 40.18. Found: C, 17.71; H, 2.44; N, 1.02; U, 38.40; I, 39.90.

X-ray Data Collection, Structure Solution, and Refinement of 1. A red crystal of approximate dimensions $0.07 \times 0.14 \times 0.21$ mm was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The *SMART*²¹ program package was used to determine the unit-cell parameters and for data collection (25 s frame⁻¹ scan time for a sphere of diffraction data). The raw frame data were processed using *SAINT*²² and *SADABS*²³ to yield the reflection data file. Subsequent calculations were carried out using the *SHELXTL*²⁴ program. The diffraction symmetry was *mmm*, and the systematic absences were consistent with the orthorhombic space groups *Pna2*₁ and *Pnma*. It was later determined that the centrosymmetric space group *Pnma* was correct. The structure was solved by direct methods and refined on *F*² by full-matrix least-

- (22) SAINT Software Users Guide, version 6.0; Bruker Analytical X-Ray Systems, Inc.: Madison, WI, 1999.
- (23) Sheldrick, G. M. SADABS, version 2.10; Bruker Analytical X-Ray Systems, Inc.: Madison, WI, 2002.
- (24) Sheldrick, G. M. SHELXTL, version 6.12; Bruker Analytical X-Ray Systems, Inc.: Madison, WI, 2001.

⁽²¹⁾ SMART Software Users Guide, version 5.1; Bruker Analytical X-Ray Systems, Inc.: Madison, WI, 1999.

Figure 1. Molecular structure of **1** with thermal ellipsoids drawn at the 30% probability level.

Table 1. X-ray Data Collection Parameters for 1 and 2

empirical	$C_{60}H_{90}U_3N_{18}$ · C_4H_8O · C_7H_8	$C_{30}H_{45}I_6NU_3 \cdot C_6H_{14}$
formula	$(1 \cdot C_4 H_8 O \cdot C_7 H_8)$	$(2 \cdot C_6 H_{14})$
fw	1941.83	1981.33
temp (K)	168(2)	163(2)
cryst syst	orthorhombic	monoclinic
Space group	Pnma	$P2_1/n$
a (Å)	30.049(3)	12.3088(12)
b (Å)	15.5193(15)	25.188(2)
<i>c</i> (Å)	15.8201(15)	16.3565(16)
α (deg)	90	90
β (deg)	90	109.486(2)
γ (deg)	90	90
$V(Å^3)$	7465.8(13)	4780.6(8)
Ζ	4	4
ρ_{calcd} (Mg m ⁻³)	1.728	2.753
μ (mm ⁻¹)	6.545	14.036
R1 $[I > 2.0\sigma(I)]^a$	0.0418	0.0215
wR2 (all data) ^a	0.1053	0.0456

^{*a*} Definitions: wR2 = $[\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$; R1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$.

squares techniques. The analytical scattering factors²⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located on a mirror plane. Nitrogen atoms N13, N14, and N15 were displaced from the mirror plane and included using partial site-occupancy factors. There was one molecule of THF and one molecule of the toluene solvent present. Each was located on a mirror plane. The toluene molecule was disordered and included as above for the disordered nitrogen atoms. Least-squares refinement yielded wR2 = 0.1053 and GOF = 1.063 for 395 variables refined against 6619 data (0.85 Å). As a comparison for refinement on F, R1 = 0.0418 for those 4892 data with $I > 2.0\sigma(I)$. It was necessary to refine the nitrogen atoms, the coordinated THF molecule, and the solvent molecules isotropically. Anisotropic refinement resulted in several atoms becoming non-positive-definite. Details are given in Table 1.

X-ray Data Collection, Structure Solution, and Refinement of 2. A dark-red crystal of approximate dimensions $0.11 \times 0.21 \times 0.28$ mm was handled as described for 1. The diffraction symmetry

was 2/m, and the systematic absences were consistent with the centrosymmetric monoclinic space group $P2_1/n$, which was later determined to be correct. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors²⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. There was one molecule of the hexane solvent present per formula unit. At convergence, wR2 = 0.0456 and GOF = 1.127 for 430 variables refined against 11 815 data. As a comparison for refinement on *F*, R1 = 0.0215 for those 10 448 data with $I > 2.0\sigma(I)$. Details are given in Table 1.

Results and Discussion

Compound 1. $(C_5Me_5)_2UCl_2$ reacts readily with NaN₃ to make a dark red complex with a single resonance in the ¹H NMR spectrum. The complex was identified by X-ray crystallography as the trimetallic azide **1** (Figure 1). It was isolated in >90% yield (eq 3).

Each uranium in **1** is attached to two bridging azide ligands and one terminal azide. Although the diffraction experiment revealed the structure, the quality of the data was not sufficient for detailed structural analysis. Within the error limits, the metrical parameters involving uranium and the azides are similar to those in $(Bu_4N)_3[U(N_3)_7]^1$ and $[(C_5-Me_5)_2U(\mu-N)(C_5Me_5)_2U(\mu-N_3)]_{4.2}$

Compound 2. In contrast to eq 3, the reaction of NaN_3 with trivalent (C_5Me_5)UI₂(THF)₃ did not generate the ionic metathesis product in which the halides were replaced by azide. The product isolated and identified by X-ray crystallography (Figure 2) was **2**, a complex that still incorporated all of the anionic ligands attached to uranium in the starting material.

In the center of the trimetallic complex was an atom that could be a nitride ligand made by reduction of azide by the U^{3+} starting material according to eq 4 and the half-reaction in Scheme 1. If each of the uranium atoms in **2** were

Scheme 1

$$6U^{3+} \rightarrow 6U^{4+} + 6e^{-}$$

 $3N_3^{-} + 6e^{-} \rightarrow 3N_2 + 3N^{3-}$

⁽²⁵⁾ International Tables for X-Ray Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. C.

Figure 2. Molecular structure of 2 with thermal ellipsoids drawn at the 50% probability level.

tetravalent, the overall charge would be balanced with the central atom as N³⁻. However, if the central atom were O²⁻ and one of the uranium atoms were U³⁺, there still would be charge balance. Likewise, a central (OH)⁻ group with two U³⁺ centers would be charge balanced. The bond distances to each uranium in 2 were sufficiently similar (Table 2) that the complex did not appear to contain different types of uranium centers. However, if there were disorder in the position of the metal of a different oxidation state, differences might not be observable.^{26 15}N NMR spectroscopy was conducted with a sample of 2 made from Na¹⁵NNN to determine the identity of the central atom. However, no resonances were observed over a sweep width of 500 ppm from -250 to +250 ppm. However, it can be difficult to identify ¹⁵N NMR resonances in paramagnetic f element complexes.²⁷

 U^{3+} versus U^{4+} Bond Distance Analogues. It was of interest to see if U–C(C₅Me₅), U–(C₅Me₅ ring centroid), and U–I distances would be useful to differentiate trivalent and tetravalent uranium complexes and aid in the identification of **2**. This would provide another metric to evaluate cases in which the oxidation state is uncertain. In the lanthanide series, Ln²⁺ bond distances are generally 0.1 Å longer than those for analogous Ln³⁺ complexes. For example, eight-

Table 2. Selected Bond Distances (Å) and Angles (deg) for $\mathbf{2}$

U1-Cnt1	2.455	$U1-C(C_5Me_5)$ range	2.719(4) - 2.757(4)
U2-Cnt2	2.462	$U2-C(C_5Me_5)$ range	2.717(4) - 2.764(4)
U3-Cnt3	2.457	$U3-C(C_5Me_5)$ range	2.708(4)-2.761(4)
U1-N1	2.152(3)	$U1-C(C_5Me_5)$ avg	2.73(2)
U2-N1	2.138(3)	U2-C(C5Me5) avg	2.74(2)
U3-N1	2.157(3)	U3-C(C5Me5) avg	2.73(2)
U1-I1	3.1536(4)	U-C(C ₅ Me ₅) avg	2.74(2)
U1-I6	3.1599(4)	U-Cnt avg	2.458
U1-I2	3.1623(4)	Cnt1-U1-N1	178.1
U1-I5	3.1720(4)	Cnt2-U2-N1	178.6
U2-I1	3.1586(4)	Cnt3-U3-N1	178.1
U2-I4	3.1617(4)	Cnt1-U1-I range	103.4-106.7
U2-I3	3.1632(4)	Cnt2-U2-I range	103.9-106.1
U2-I2	3.2109(4)	Cnt3-U3-I range	103.4-107.4
U3-I4	3.1483(4)	U2-U3-U1	59.985(8)
U3-I6	3.1622(4)	U2-U1-U3	59.710(4)
U3-I3	3.1648(4)	U3-U2-U1	60.305(6)
U3-I5	3.1825(4)		

coordinate complexes containing the trivalent $[(C_5Me_5)_2Sm]^+$ unit have a 2.68(1)–2.80(1) Å range of Sm–C(C₅Me₅) distances, whereas eight coordinate complexes containing divalent (C₅Me₅)₂Sm have a 2.82(3)–2.86(3) Å range. Although there is overlap between these ranges within the error limits, the trend for longer distances for the lower valent metal is clear.

To determine if similar trends exist in organoactinide structures, metrical data on 43 examples of trivalent and tetravalent uranium $(C_5Me_5)^-$ complexes in the Cambridge Crystallographic Data Centre database were examined and compiled (Table 3). Because the Shannon radius¹⁹ for six-coordinate U³⁺ is 1.025 Å versus 0.89 Å for U⁴⁺, a differentiation seemed possible. Metallocenes are analyzed here in detail because they constitute the bulk of examples in the table.

This survey shows that although trivalent metallocenes on average have longer U–C(C₅Me₅) and U–(C₅Me₅ ring centroid) distances, which is consistent with the Shannon radii, there is significant overlap in the ranges of values for U³⁺ and U⁴⁺ complexes. The average U–(C₅Me₅ ring centroid) distance of the 6 eight-coordinate U³⁺ structures is 2.51 Å compared to 2.42 Å for 16 eight-coordinate U⁴⁺ structures. However, the range of U–(C₅Me₅ ring centroid) distances of the 6 eight-coordinate U³⁺ complexes in Table 3 is 2.46–2.55 Å compared to a range of 2.42–2.53 Å for the 16 eight-coordinate U⁴⁺ complexes.

Hence, on average, the U³⁺ distances are longer, but the ranges overlap so much that it is difficult to use this criterion for any specific complex. In the case of complex **2**, the 2.444, 2.455, and 2.455 Å U–(C₅Me₅) ring centroid distances are formally in the range of the distances for U⁴⁺ metallocenes, but they are also close to the range for U³⁺. The distances in the trivalent monoring precursor (C₅Me₅)UI₂(THF)₃ are 2.504 and 2.521 Å. No conclusion on oxidation state can be drawn from these data.

The 2.48–2.63 Å spread of distances found for 12 ninecoordinate U⁴⁺ structures (2.50 Å average) also overlaps the other ranges. Because hydride ligands are difficult to locate crystallographically in the presence of uranium, an (n + 1)-

⁽²⁶⁾ Parkin, G. Acc. Chem. Res. 1992, 25, 455.

⁽²⁷⁾ Evans, W. J.; Rego, D. B.; Ziller, J. W. Inorg. Chem. 2006, 45, 10790.

Table 3. Bond Distances (Å) and Angles (deg) of Trivalent and Tetravalent Uranium Metallocenes from the Cambridge Crystallographic Data CentreDatabase Arranged in Order of Increasing U-C(C_5Me_5) Average within Each Oxidation State/ Coordination Number Category

	oxid.	coord.	$U-C(C_5Me_5)$	$U-C(C_5Me_5)$		
complex	state	no.	range	avg	U-Cnt ^a	Cnt–U–Cnt ^a
$[(C_5Me_5)_2U]_2(\mu-O)^{30}$	3	7	2.676(9)-2.823(9)	2.74(3)	2.455	134.5
					2.459	132.6
					2.465	133.6 ^b
					2.487	
$\{[(M_0,S_i),N](C,M_0,N]\}_{(\mu,m_0)} = m_0^{(\mu,m_0)} = m_0^{(\mu$	3	7	2.766(3) - 2.705(3)	2.78(1)	2.407	
$\{[(Me_3SI)_2N](C_5Me_5)O_2(\mu-\eta^*, \eta^*-C_6H_6)^*$	3	7	2.700(3) = 2.793(3) 2 791(3) = 2 826(3)	2.78(1) 2.80(1)	2.500	132.4
	5	,	2.771(3) 2.020(3)	2.00(1)	2.523	152.4
					2.528^{b}	
$[(C_5Me_5)_2U(THF)_2][BPh_4]^{33}$	3	8	2.68(2)-2.75(1)	2.72(2)	2.46	134.2
$[(C_5Me_5)_2U(\mu-Cl)]_3^{34}$	3	8		2.76(3)	2.48^{b}	127.9
$(C_5Me_5)UI_2(THF)_3^6$	3	8		2.77(1)	2.521	
$[\mathbf{N}_{-}(10, \dots, n)] = (1) \langle \mathbf{T}_{\mathbf{M}_{-}} \rangle [\mathbf{I}_{-}(1, \mathbf{M}_{-}), \mathbf{I}_{-}(1, \mathbf{M}_{-})] \rangle $	2	0	27((7) - 2825(())	2.80(1)	2.504	125 7
$[Na(18-crown-6)(1HF)_2][(C_5Me_5)_2O(dddt)]^{2,22}$	3	0	2.700(7)=2.855(0)	2.19(2)	2.500	155.7
					2.529 2 518 ^b	
$(C_5Me_5)_2UI(C_3Me_4N_2)^{36}$	3	8	2.765(5) - 2.841(5)	2.80(2)	2.514	135.2
(-5 -5)2- (-5 -4 2)					2.532	
					2.523^{b}	
[Na(18-crown-6)(THF)2][(C5Me5)2U(SiPr)2]37	3	8	2.786(3)-2.823(3)	2.81(1)	2.525	133.8
					2.548	
					2.537 ^b	
$[(C, M_{\tau}), U] (\dots, v[t_{\tau}, v[t_{\tau}], v[t_{\tau}], v[t_{\tau}])]$	2		2.705(14) $2.979(14)$	2.92(2)	2564	101.1
$[(C_5Me_5)_2 \cup]_2(\mu - \eta^{*}; \eta^{-1} - C_6H_6)^{-1}$	3	9	2.795(14)=2.878(14)	2.85(3)	2.304	121.1
					2.507	121.7 121.4^{b}
					2.583	
					2.570^{b}	
$[(C_5Me_5)_2U][BPh_4]^{32}$	3	10	2.753(7) - 2.830(8)	2.78(3)	2.490	132.7
					2.516 2.502h	
					2.505	
$(C_5Me_5)_2U(N-2.4.6-t-Bu_3C_6H_2)^{38}$	4	7		2.790(12)	2.515	133.8
(-5 -5)2 - (-5 -5 - 6 - 2)						
[(C ₅ Me ₅) ₂ UMe(THF)][MeBPh ₃] ³⁹	4	8	2.67(1)-2.75(1)	2.71(2)	2.428	140.0
					2.435	
		0			2.432	
$(C_5Me_5)_3 \cup (\mu_3-1)(\mu_3-S)(\mu_2-1)_3 \cup (\mu_3-S)(\mu_2-1)_3 \cup (\mu_3-S)(\mu_3-1)(\mu_3-S)(\mu_3-1)_3 \cup (\mu_3-S)(\mu_3-1)(\mu_3-S)(\mu_3-1)(\mu_3-S)(\mu_3-1)_3 \cup (\mu_3-S)(\mu_3-1)(\mu_3-S)($	4	8	2.62(7)-2.78(7)	2./1(6)	2.422	
					2.420	
					2.436^{b}	
$(C_5Me_5)_2UMe_2^{41}$	4	8	2.694(4) - 2.774(4)	2.73(2)	2.456	140.4
					2.462	
					2.459^{b}	
$(C_5 Me_5)_2 U(dddt)^{c,35}$	4	8	2.676(13) - 2.753(13)	2.73(2)	2.451	133.1
					2.458	
$(C \mathbf{M}_{0}) \mathbf{U}(\mathbf{S}\mathbf{M}_{0})$ 42	4	0	2.71(1) - 2.77(1)	272(2)	2.455°	127.6
$(C_5Me_5)_2 U(SMe)_2^{-2}$	4	8	2.71(1) = 2.77(1) 2.71(6) = 2.77(9)	2.73(2) 2.74(2)	2.47(2) 2.46(4)	137.0
(05)105)20(0114)2	-	0	2.71(0) 2.77(5)	2.74(2)	2.48(4)	155.1
					$2.47(1)^{b}$	
$[(C_5Me_5)_2U(OCH_3)]_2PH^{44}$	4	8	2.70(2) - 2.80(2)	2.74(3)	2.462	133.1
					2.483	
					2.452^{b}	
$(C_5Me_5)_2U(C_4Ph_4)^{45}$	4	8	2.731(3) - 2.774(3)	2.75(2)	2.476	142.6
$[Li(tmed)][(C_5Me_5)_2U(NC_6H_5)CI]^{a,38}$	4	8		2.77(2)	2.492	132.4
					2.494 2.492	
$(C_5Me_5)_2U(N=CPh_2)_2^{46}$	4	8	2.724(7) - 2.811(6)	2,77(3)	2.493	141.0
		0	2.721(7) 2.011(0)	2.17(3)	2.506	1 11.0
					2.495^{b}	
$(C_5Me_5)_2U[N=C(CH_2C_6H_5)(tpy)]_2^{e,47}$	4	8	2.757(6)-2.779(7)	2.77(8)	2.486	136.8
$[(C_5Me_5)_2U\{NH(C_6H_3Me_2-2,6)\}_2]^{48}$	4	8	2.731(5)-2.802(7)	2.78(3)	2.562	127.8

Analysis of Uranium Azide and Nitride Complexes

Table 3. Cont'd.

complex	oxid. state	coord. no.	U-C(C ₅ Me ₅) range	U-C(C ₅ Me ₅) avg	U-Cnt ^a	Cnt–U–Cnt ^a
$[(C_5Me_5)_2U(\mu-N)U(\mu-N_3)(C_5Me_5)_2]_4^2$	4	8	2.700(9)-2.876(11)	2.78(4)	2.490 2.499 2.507 2.508	128.2 128.4 128.3 126.2
					2.514 2.521 2.521 2.527 2.511 ^b	127.8°
$(C_5Me_5)_2U(P-2,4,6-t-Bu_3C_6H_2)(OPMe_3)^{49}$	4	8	2.753(6)-2.835(5)	2.79(2)	2.513 2.518 2.516 ^b	131.4
$[Na(18\text{-}crown\text{-}6)(THF)_2][(C_5Me_5)_2U(S'Bu)(S)]^{50}$	4	8	2.754(6)-2.841(7)	2.79(3)	2.502 2.520 2.511 ^b	130.7
$(C_5Me_5)_2U(O)[C(NMeCMe)_2]^{30}$	4	8	2.715(9)-2.871(9)	2.80(5)	2.523 2.527 2.525 ^b	136.3
$(C_5Me_5)_2UI_2(NCPh)^{51}$	4	9	2.62(2)-2.81(2)	2.74(5)	2.45(2) 2.48(2) $2.47(2)^{b}$	136.7
$(C_5Me_5)_2U(S'Bu)(S_2C'Bu)^{42}$	4	9	2.71(2)-2.80(2)	2.75(3)	2.47(2) 2.49(2) $2.48(1)^{b}$	133.3
$(C_5Me_5)_2UCl(\eta^2-'BuNSPh)^{52}$	4	9	2.72(2)-2.80(2)	2.76(2)	2.487 2.501 2.494^{b}	128.42
$(C_5Me_5)_2U(CH_2C_6H_5)[\eta^2-(O,C)-ONC_5H_4]^{53}$	4	9	2.732(14)-2.795(13)	2.77(2)	2.481 2.501 2.491 ^b	135.3
$[(C_5Me_5)_2U(NMe_2)(CN'Bu)_2][BPh_4]^{54}$	4	9	2.74(1)-2.80(1)	2.77(2)	2.49 2.50 2.50^{b}	130.9
$(C_5Me_5)_2UCl_2(HNPPh_3)^{55}$	4	9	2.74(1)-2.81(1)	2.77(2)	2.49(4) 2.50(4) $2.495(5)^{b}$	134
$(C_5Me_5)_2UCl_2(HNSPh_2)^{56}$	4	9	2.69(2)-2.89(2)	2.77(6)	2.48 2.52 2.50 ^b	130.7
$(C_5Me_5)_2UCl(OH)(HNSPh_2)_2^{57}$	4	9	2.73(1)-2.81(2)	2.78(2)	2.497 2.499 2.501 2.511 2.52 ^b	135.8
$(C_5Me_5)_2UCl[(CH_2)(CH_2)P(Ph)(Me)]^{58}$	4	9	2.773(6)-2.807(8)	2.78(3)	2.49 2.50 2.50^{b}	132.6
[Na(18-crown-6)(THF) ₂][(C ₅ Me ₅) ₂ U(SMe)(SCH ₂)] ³⁷	4	9	2.751(8)-2.813(9)	2.79(2)	2.513 2.535 2.524 ^b	132.8
$(C_5Me_5)_2UBr(\eta^2-'BuNSPh)^{52}$	4	9	2.764(13)-2.819(13)	2.80(2)	2.524 2.514 2.527 2.521 ^b	128.89
$(C_5Me_5)_2UCl[(CH_2)(CH_2)P(Ph)_2]^{58}$	4	9	2.75(2) - 2.86(2)	2.80(3)	2.521 2.56 2.63 2.60^{b}	136.7
$[(C_5Me_5)_2U]_2\{[\eta^2-CO(NMe_2)]\}_2^{59}$	4	10	2.72(1)-2.81(1)	2.78(2)	2.502 2.510 2.506 ^b	138.0
$[(C_5Me_5)_2U(NCMe)_5][BPh_4]_2^{60}$	4	11	2.784(4)-2.820(4)	2.80(1)	2.528 2.540 2.534 ^b	178.6
$[(C_5Me_5)_2U(NCMe)_5]I_2{}^{60}$	4	11	2.792(11)-2.828(4)	2.81(1)	2.541 2.539 2.540^{b}	180.0

^{*a*} Cnt = C_5Me_5 ring centroid. ^{*b*} Average. ^{*c*} dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate. ^{*d*} tmed = tetramethylethylenediamine. ^{*e*} tpy = terpyridyl.

Table 4. Bond Distances (Å) of Trivalent and Tetravalent Uranium Complexes Containing U–I Bonds from the Cambridge Crystallographic Centre
Database Arranged in Order of Increasing U-I Average within Each Oxidation State/Coordination Number Category

complex	oxid. state	coord. no.	U-I distance	U-I avg	U-(µ-I) distance	U-(µ-I) avg
$[UI_2(OPPh_3)_4]I^{61}$	3	6	3.157(1) 3.146(1)	3.151(6)		
$\begin{split} & [U\{\kappa^3\text{-}H(\mu\text{-}H)B(pz'^{Bu,Me})_2\}(Hpz'^{Bu,Me})I(\mu\text{-}I)]_2{}^{a,62} \\ & UI_3(THF)_4{}^{63} \end{split}$	33	 7 7	3.117(2) 3.103(2) 3.167(2) 3.119(2)	3.117(2) 3.13(3)	3.215(2)	3.215(2)
$(C_5Me_5)UI_2(THF)_3^6$	3	8	3.179(1) 3.161(1) 3.162(1)	3.168(7)		
$(C_{5}H_{4}'Bu)UI_{2}(py)_{3}^{b,64}$	3	8	3.168(1) 3.1466(11)	3.17(2)		
(tpza)UI ₃ (THF) ^{c.65}			3.1912(11) 3.1439(6) 3.1914(6) 3.2087(7)	3.183(3)		
(tpza)UI ₃ (NCMe) ^{c,65}	3	8	3.1632(10) 3.2383(14) 3.2637(10)	3.22(4)		
$UI_3(bipy)_2(py)^{b.d.66}$	3	8	3.2032(8) 3.2071(8) 3.2511(8)	3.22(2)		
$(C_5H_4'Bu)_2UI(py)_2^{64}$	3	9		3.174(5)		
$IU(OAr)_3^{e,67}$	4	4	3.011(2)	3.011(2)		
I ₂ U(OAr) ₂ (THF) ^{e,67}	4	5	2.982(1) 3.025(1)	3.00(2)		
$Tp*UI_{3^{f,68}}$	4	6	2.960(1) 2.973(1) 2.969(1)	2.967(5)		
$UI_4(py)_3^{b,69}$	4	7	2.9857(4) 3.0438(4) 3.0163(4) 2.0558(4)	3.00(3)		
$\begin{array}{l} (SPr^{i})_{2}UI_{2}(py)_{3}{}^{b,70} \\ Tp^{*}UI_{3}(NCMe){}^{f.68} \end{array}$	4 4	7 7	2.9980(8) 3.0238(9) 3.3036(7)	3.093(4) 3.1(1)		
$(C_5Me_5)_3U_3(\mu_3-I)(\mu_3-S)(\mu_2-I)_3I_3^{40}$	4	8	2.961(5) 2.943(5) 2.953(5)	2.952(7)	3.240(5) 3.115(5) 3.353(4) 3.068(5) 3.289(5) 3.092(5) 3.092(5) 3.094(5) 3.118(5)	3.16(10)
$[(C_5H_3(SiMe_3)_2]_2UI_2{}^{71}$	4	8	2.953(2) 2.954(2)	2.9535(5)	51110(5)	
[(C ₃ Me ₅)U(µ-I) ₂] ₃ N ^g	4	8			3.1536(4) 3.1599(4) 3.1623(4) 3.1720(4) 3.1586(4) 3.1617(4) 3.1632(4) 3.1632(4) 3.1483(4) 3.1622(4) 3.1648(4) 3.1648(4) 3.1825(4)	3.16(2)
$(tpa)U(OMe)I_3^{h,72}$	4	8	3.1678(2) 3.1776(2) 3.1931(2)	3.18(1)	- \ /	
${[(tpa)U(\mu-O)I]_3(\mu_3-I)}I_2^{h,72}$	4	8	3.2242(5) 3.1861(6) 3.2326(6)	3.21(2)	3.3016(6) 3.2840(6) 3.2754(5)	3.29(1)
$(\text{tpa})U(OMe)_2I_2^{h,72}$	4	8	3.1670(3) 3.2634(3)	3.21(4)	5.2734(3)	
$\begin{array}{l} [UI_2(NCMe)_7][UI_6]^{69} \\ (C_5Me_5)_2UI_2(NCPh)^{68} \end{array}$	4 4	9 9	3.001(2) 2.942(3) 3.092(2)	3.001(2) 3.01(8)		

 a pz = pyrazolyl. b py = pyridine. c tpza= tris[(2-pyrazinyl)methyl]amine. d bipy = bipyridine. e OAr = 2,6-di-*tert*-butylphenoxide. f Tp* = hydridotris(3,5-dimethylpyrazolylborate). g This work. h tpa = tris[(2-pyridyl)methyl]amine.

Analysis of Uranium Azide and Nitride Complexes

coordinate U^{4+} hydride could not be differentiated from an *n*-coordinate U^{3+} complex on the basis of $U-C(C_5Me_5)$ distances.²⁸

Similarly, there is no particular range of (C₅Me₅ ring centroid)–U–(C₅Me₅ ring centroid) angles for trivalent and tetravalent metallocenes. The 5 eight-coordinate U^{3+} structures have a 127.9–135.7° range compared to 126.2–142.6° for the 15 eight-coordinate U^{4+} structures and 128.4–136.7° for the 12 nine-coordinate U^{4+} structures.

In addition to these analyses of U–C(C₅Me₅) distances, U–I bond distances were surveyed in 23 U⁺³ and U⁴⁺ compounds in the Cambridge Crystallographic Data Centre database. The distances are compiled in Table 4. Only three involved bridging iodides. The single U³⁺ example had an average U–(μ -I) of 3.215(2) Å that was in the middle of the 3.16(10) and 3.29(1) Å averages of the U⁴⁺ examples. The 3.153(4)–3.2109(4) Å range in **2** overlaps the U⁴⁺ and U³⁺ averages. The average U–I terminal distances for 9 U³⁺ complexes range from 3.13(3)–3.22(2) Å compared to a range of 2.952(7)–3.21(2) Å for 14 U⁴⁺ complexes. This shows that there is considerable overlap in the U–I distances in both U³⁺ and U⁴⁺ iodide complexes and that no particular trend is observed in these data either.

APCI-MS. To resolve the problem of identifying the central atom E in $[(C_5Me_5)U(\mu-I)_2]_3E$, it was desirable to obtain mass spectrometric data on **2** and an analogue made from ¹⁵N-substituted azide, Na¹⁵NNN. Because ¹⁵N azide is substituted with ¹⁵N on only one of the terminal ends, the azide to nitride conversion in eq 5 could put 50% ¹⁵N into

$$2^{15}N = N = N^{1-} + 4e^{-} \rightarrow N^{3-} + {}^{15}N^{3-} + N_2 + {}^{15}NN \qquad (5)$$

a nitride product arising from azide assuming the conventional mechanism for azide to nitride conversion. Mass spectrometry would be ideal for determining ¹⁵N incorporation in this paramagnetic complex.

Attempts to obtain mass spectrometric data on **2** using electrospray mass spectrometry (ESMS), a technique that had previously been successful with a variety of organolanthanide complexes,²⁹ were unsuccessful. The conditions of the ESMS

- (28) Evans, W. J.; Miller, K. A.; Kozimor, S. A.; Ziller, J. W.; DiPasquale, A. G.; Rheingold, A. L. Organometallics 2007, 26, 3568.
- (29) Evans, W. J.; Johnston, M. A.; Fujimoto, C. H.; Greaves, J. Organometallics 2000, 19, 4258.
- (30) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. *Polyhedron* 2004, *23*, 2689.
 (31) Evans, W. J.; Kozimor, S. A.; Ziller, J. W.; Kaltsoyannis, N. *J. Am.*
- *Chem. Soc.* **2004**, *126*, 14533. (32) Evans, W. J.; Nyce, W. G.; Forrestal, K. J.; Ziller, J. W. Organome-
- *tallics* **2002**, *21*, 1050. (33) Boisson, C.; Berthet, J.-C.; Ephritikhine, M.; Lance, M.; Nierlich, M.
- J. Organomet. Chem. 1997, 533, 7.
 (34) Manriquez, J. M.; Fagan, P. J.; Marks, T. J.; Vollmer, S. H.; Day, V.
- Wain quez, J. M., Fagan, F. J., Marss, T. J., Volinier, S. H., Day, V.
 W. J. Am. Chem. Soc. 1979, 101, 5075.
- (35) Roger, M.; Belkhiri, L.; Thuéry, P.; Arliguie, T.; Fourmigué, M.; Boucekkine, A.; Ephritikhine, M. Organometallics 2005, 24, 4940.
- (36) Mehdoui, T.; Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. Chem. Commun. 2005, 2860.
- (37) Arliguie, T.; Lescop, C.; Ventelon, L.; Leverd, P. C.; Thuéry, P.; Nierlich, M.; Ephritikhine, M. Organometallics 2001, 20, 3698.
- (38) Arney, D. S. J.; Burns, C. J. J. Am. Chem. Soc. 1995, 117, 9448.
- (39) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Organometallics 2005, 24, 3407.
- (40) Clark, D. L.; Gordon, J. C.; Huffman, J. C.; Watkin, J. C.; Zwick, B. D. New J. Chem. 1995, 19, 495.

technique can encourage redox chemistry that can degrade the analytes. APCI-MS was attractive because it does not run the risk of this type of electrochemical degradation. Previously, APCI-MS had been considered primarily as a methodology for analyzing organic compounds of molecular weights up to 1000 amu.

APCI-MS conditions typically involve a flow rate of 0.2– 1.0 mL min⁻¹, a temperature of 500 °C, and a corona discharge current of 5 μ A. Variation of these conditions revealed that, for **1** and **2**, a lower flow rate (50 μ L min⁻¹), temperature (250 °C), and corona discharge current (1 μ A) gave a better signal. It should be noted, however, that some current was required. No ions were seen if the current was switched off, a condition that is akin to thermospray, an

- (41) Barnea, E.; Andrea, T.; Kapon, M.; Berthet, J.-C.; Ephritikhine, M.; Eisen, M. S. J. Am. Chem. Soc. 2004, 126, 10860.
- (42) Lescop, C.; Arliguie, T.; Lance, M.; Nierlich, M.; Ephritikhine, M. J. Organomet. Chem. 1999, 580, 137.
- (43) Gradoz, P.; Baudry, D.; Ephritikhine, M.; Lance, M.; Nierlich, M.; Vigner, J. J. Organomet. Chem. 1994, 466, 107.
- (44) Duttera, M. R.; Day, V. W.; Marks, T. J. J. Am. Chem. Soc. 1984, 106, 2907.
- (45) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Chem. Commun. 2005, 4681.
- (46) Kiplinger, J. L.; Morris, D. E.; Scott, B. L.; Burns, C. J. Organometallics 2002, 21, 3073.
- (47) Schelter, E. J.; Veauthier, J. M.; Thompson, J. D.; Scott, B. L.; John, K. D.; Morris, D. E.; Kiplinger, J. L. J. Am. Chem. Soc. 2006, 128, 2198.
- (48) Straub, T.; Frank, W.; Reiss, G. J.; Eisen, M. S. J. Chem. Soc., Dalton Trans. 1996, 2541.
- (49) Arney, D. S. J.; Schnabel, R. C.; Scott, B. L.; Burns, C. J. J. Am. Chem. Soc. 1996, 118, 6780.
- (50) Ventelon, L.; Lescop, C.; Arliguie, T.; Leverd, P. C.; Lance, M.; Nierlich, M.; Ephritikhine, M. Chem. Commun. 1999, 659.
- (51) Enriquez, A. E.; Scott, B. L.; Neu, M. P. *Inorg. Chem.* 2005, *44*, 7403.
 (52) Danopoulos, A. A.; Hankin, D. M.; Cafferkey, S. M.; Hursthouse, M.
- B. J. Chem. Soc., Dalton Trans. 2000, 1613. (53) Pool, J. A.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2005,
- 127, 1338.
 (54) Boisson, C.; Berthet, J.-C.; Lance, M.; Nierlich, M.; Ephritikhine, M. J. Organomet. Chem. 1997, 548, 9.
- (55) Cramer, R. E.; Roth, S.; Gilje, J. W. Organometallics **1989**, 8, 2327.
- (56) Cramer, R. E.; Ariyaratne, K. A. N. S.; Gilje, J. W. Z. Anorg. Allg. Chem. 1995, 621, 1856.
- (57) Ariyaratne, K. A. N. S.; Cramer, R. E.; Jameson, G. B.; Gilje, J. W. J. Organomet. Chem. 2004, 689, 2029.
- (58) Cramer, R. E.; Roth, S.; Edelmann, F.; Bruck, M. A.; Cohn, K. C.; Gilje, J. W. Organometallics **1989**, 8, 1192.
- (59) Fagan, P. J.; Manriquez, J. M.; Vollmer, S. H.; Day, C. S.; Day, V. W.; Marks, T. J. J. Am. Chem. Soc. 1981, 103, 2206.
- (60) Mayandié, J.; Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. J. Am. Chem. Soc. 2006, 128, 1082.
- (61) Berthet, J.-C.; Nierlich, M.; Ephritikhine, M. Polyhedron 2003, 22, 3475.
- (62) Maria, L.; Domingos, Á.; Santos, I. Inorg. Chem. 2003, 42, 3323.
- (63) Clark, D. L.; Sattelberger, A. P.; Bott, S. G.; Vrtis, R. N. Inorg. Chem. 1989, 28, 1771.
- (64) Mehdoui, T.; Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. Dalton Trans. 2005, 1263.
- (65) Mazzanti, M.; Wietzke, R.; Pécaut, J.; Latour, J.-M.; Maldivi, P.; Remy, M. *Inorg. Chem.* **2002**, *41*, 2389.
- (66) Rivière, C.; Nierlich, M.; Ephritikhine, M.; Madic, C. Inorg. Chem. 2001, 40, 4428.
- (67) Avens, L. R.; Barnhart, D. M.; Burns, C. J.; McKee, S. D.; Smith, W. H. Inorg. Chem. 1994, 33, 4245.
- (68) Enriquez, A. E.; Scott, B. L.; Neu, M. P. *Inorg. Chem.* **2005**, *44*, 7403. (69) Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. *Inorg. Chem.* **2005**, *44*,
- 1142. (70) Leverd, P. C.; Lance, M.; Vigner, J.; Nierlich, M.; Ephritikhine, M.
- *Dalton Trans.* **1995**, 237. (71) Blake, P. C.; Lappert, M. F.; Taylor, R. G.; Atwood, J. L.; Hunter,
- W. E.; Zhang, H. Dalton Trans. **1995**, 3335.
- (72) Karmazin, L.; Mazzanti, M.; Pécaut, J. Inorg. Chem. 2003, 42, 5900.

Figure 3. APCI-MS spectrum of 1.

earlier method of ionizing samples in liquid matrices, but without the ammonium salt used in that technique. The corona discharge acts in place of the filament used in conventional chemical ionization. The discharge initially ionizes the solvent molecules, which are present in great excess. Ion/molecule reactions within the solvent yield protonated solvent molecules that can potentially act as charge- and proton-transfer reagents to ionize the analyte of interest.

Trimeric 1 did not produce a signal in the molecular ion region but provided very obvious fragments of $[M - N_3]^+$ and $[M - C_5Me_5]^+$ at m/z = 1734 and 1641, respectively (Figure 3). Primary ions in the rest of the spectrum included bimetallic and monometallic fragments such as $[(C_5Me_5)_4-(N_3)_3U_2]^+$ and $[(C_5Me_5)_4(N_3)_4U_2]^+$ at m/z = 1142 and 1184 and $[(C_5Me_5)_2N_3U]^+$ and $[(C_5Me_5)_2(N_3)_2U]^+$ at m/z = 550 and 592, respectively. Interestingly, there were also ions at m/z = 2327 and 2234 corresponding to $\{[(C_5Me_5)_2U(N_3)_2]_4 - N_3\}^+$ and $\{[(C_5Me_5)_2U(N_3)_2]_4 - C_5Me_5\}^+$, suggesting that 1 may be capable of different degrees of oligomerization than the trimeric form seen in the crystalline state.

The molecular ion region of mass spectra generated for **2** synthesized with ¹⁴N showed m/z = 1894.9 and 1895.9. These peaks are consistent with $[M]^+$ and a protonated molecule, [M + H], respectively, arising from a combination of charge- and proton-transfer ionizations where $M = [(C_5 - Me_5)U(\mu-I)_2]_3N$ (Figure 4). The ratio of these ions was dependent on the temperature of the APCI-MS probe. Lower temperature operation at 250 °C increased the $[M + H]^+$ ion, although this ion was still only present at approximately 65% of the $[M]^+$ intensity (Figure 5). The ratio of these peaks and the next higher mass peak due to ¹³C incorporation was 100:100:18 for $[M]^+/[^{13}CM]^+$ and $[M + H]^+/[^{13}CM + H]^+$ and $[^{13}C_2M]^+$, respectively.

If $[(C_5Me_5)U(\mu-I)_2]_3O$ were present, this would be expected to increase the m/z = 1896.9 ion. In addition, "{[(C₅-Me₅)U(μ -I)₂]₃O}⁺" ions incorporating ¹³C should give larger intensities at m/z = 1897 and 1898 than were observed. Calculations to evaluate this point more quantitatively were made on the 250 °C spectrum of **2** in which the m/z = 1894.9peak was observed at 99% intensity for ions in the molecular ion region. Assuming this peak arises from $\{[(C_5Me_5)U(\mu I_{2}_{3}N^{+} = [M]^{+}$, the m/z = 1895.9 peak would be expected to have a 34% relative intensity arising from an [M]⁺ containing one ¹³C atom. Because the m/z = 1895.9 peak has an intensity of 100% relative to the m/z = 1894.9 peak, it appears that 66% of m/z = 1895.9 arises from $[M + H]^+$. The peak at m/z = 1896.9 should have contributions from $[M]^+$ with two ¹³C atoms (5.6% intensity relative to the m/z= 1894.9 peak) and from $[M + H]^+$ with one ¹³C atom (22%) relative intensity). The total of these intensities, 27.6%, is equivalent to all of the intensity observed at m/z = 1896.9, which was 24.4%. Because the observed intensity for m/z= 1896.9 can be entirely accounted for by nitride-containing ions, i.e., $\{[(C_5Me_5)U(\mu-I)_2]_3N\}^+$ with two ¹³C atoms and $\{[(C_5Me_5)U(\mu-I)_2]_3N + H\}^+$ with one ¹³C atom, this suggests that there is very little, if any, $[(C_5Me_5)U(\mu-I)_2]_3O$ in the sample. A similar result was found with a spectrum taken at 500 °C. In this case, the intensities were 100% [M]⁺, 52% $[M + 1]^+$, and 10% $[M + 2]^+$ (again based on intensities in

the molecular ion region). The sum of the intensities of a nitride-containing $[M]^+$ ion containing two ¹³C atoms (5.7%) and a $[M + H]^+$ ion containing one ¹³C atom (6%) was again slightly larger than the 10% intensity observed for the m/z = 1896.9 ion at which {[(C₅Me₅)U(μ -I)₂]₃O}⁺ would be observed.

Calculations were also done on the exact mass expected for the m/z = 1896.9 peak in the 250 °C spectrum. The exact mass calculated for a sample containing the mixture of nitride-containing [M]⁺ and [M + H]⁺ given above should be m/z = 1896.9445. The observed mass was m/z =1896.9457. In comparison, 5% incorporation of an oxide would give a calculated mass of m/z = 1896.9406 and 10% oxide would give m/z = 1896.9366. Hence, the observed peak is much closer to the nitride-containing exact mass than to the masses likely if oxide were present. In summary, neither isotope ratios nor exact masses show any evidence for oxide-containing impurities.

When compound **2** was synthesized with Na¹⁵NNN, with the single label at one end of the three-nitrogen chain, the incorporation of N/¹⁵N at 1:1 would be expected to give a 50:100:55:5 ratio in the molecular ion region, where 50 corresponds to [M]⁺. This is close to the 65:100:65:5 ratio that was observed. Figure 5 shows the molecular ion regions for the NaNNN and Na¹⁵NNN reaction products. The change in the relative intensities with the ¹⁵N-labeled azide precursor is consistent with the presence of a nitride rather than an oxide. The similarity of observed intensities to those calculated for 50% incorporation is consistent with the assumption of nitride incorporation according to eq 5.

Discussion

The results obtained show that the APCI-MS technique is an effective mass spectrometric option for analyzing air- and moisture-sensitive organometallic f element complexes. Although a parent ion was not observed for 1, significant fragment ions as well as ions suggestive of higher degrees of oligomerization were found. For 2, fragment ions as well as a parent ion were obtained, and these allowed the identification of the central ion as nitrogen, a determination not possible by X-ray crystallography.

The APCI-MS results for **2** clearly demonstrate that the atom contained within the U_3 triangle is nitrogen. The molecular weight is 2 amu less than would be seen for oxygen and 3 amu less than that for hydroxide. In addition, the isotope pattern fits the expected pattern for the inclusion of ¹⁵N from Na¹⁵NNN. The presence of oxygen or hydroxide as a central atom would provide a very different isotope pattern in the molecular ion region as well as a change of the molecular weight.

The identification of **2** as a nitride indicates that azide to nitride conversions are not limited to the $[(C_5Me_4R)_2U][(\mu-Ph)_2BPh_2]/NaN_3$ (R = Me, H) reactions that formed $[(C_5-Me_4R)_2U]$

Me₄R)₂U(μ -N)(C₅Me₅)₂U(μ -N₃)]₄. This type of reaction can also occur with trivalent (C₅Me₅)UI₂(THF)₃. In the [(C₅-Me₄R)U][(μ -Ph)₂BPh₂]/NaN₃ reactions, likely intermediates were (C₅Me₄R)₂UN₃. In the case of **2**, it was expected that metathesis with iodides could provide azide complexes such as "(C₅Me₅)UI(N₃)(THF)_x". Because the iodide to uranium ratio in the starting material is retained in the product, this reaction must be more complicated than a simple ionic metathesis followed by reduction of azide. This may account for the low yield of the product.

A comparison of U–C(C₅Me₅), U–(C₅Me₅ ring centroid), and U–I distances in the U³⁺ and U⁴⁺ complexes in the literature shows that the ranges overlap considerably. The typical 0.1 Å demarcation found between Ln²⁺ and Ln³⁺ metallocene complexes is not found for these uranium complexes. Although U³⁺ complexes tend to have slightly larger bond distances compared to U⁴⁺, the difference is not large enough to make this a definitive means of analyzing the oxidation state. The regularity of the lanthanides compared to the actinides and to transition metals is consistent with the fact that the lanthanides are the most ionic of these three classes of complexes.

Conclusion

APCI-MS has proven to be viable with air-sensitive organoactinide complexes. With $[(C_5Me_5)U(\mu-I)_2]_3N$, this provided essential isotopic identification of the central atom as nitride and provided another example of a U³⁺-induced azide to nitride conversion. Analysis of U-C(C₅Me₅) and U-I metrical parameters in U³⁺ and U⁴⁺ metallocene complexes shows that there is considerable overlap between the U-C and U-I distances in the two classes of complexes.

Acknowledgment. We thank the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences of the Department of Energy for support.

Supporting Information Available: X-ray diffraction details (CIF) and X-ray data collection, structure, solution, and refinement of compounds 1 and 2 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC7006099